The K0nneth Formula in Periodic Cyclic Homology

نویسنده

  • IOANNIS EMMANOUIL
چکیده

Abstract. In this paper, we introduce a Z-graded variant of the periodic cyclic homology of associative algebras which generalizes the infinitesimal cohomology of affine algebras in characteristic 0 and show that it satisfies the K0nneth formula (i.e. it commutes with the formation of tensor products). We also show that the Kllnneth formula in periodic cyclic homology holds only under the presence of certain finiteness conditions.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pairing between Super Lie-rinehart and Periodic Cyclic Homology

We consider a pairing producing various cyclic Hochschild cocycles, which led Alain Connes to cyclic cohomology. We are interested in geometrical meaning and homological properties of this pairing. We define a non-trivial pairing between the homology of a Lie-Rinehart (super-)algebra with coefficients in some partial traces and relative periodic cyclic homology. This pairing generalizes the ind...

متن کامل

On the cyclic Homology of multiplier Hopf algebras

In this paper, we will study the theory of cyclic homology for regular multiplier Hopf algebras. We associate a cyclic module to a triple $(mathcal{R},mathcal{H},mathcal{X})$ consisting of a regular multiplier Hopf algebra $mathcal{H}$, a left $mathcal{H}$-comodule algebra $mathcal{R}$, and a unital left $mathcal{H}$-module $mathcal{X}$ which is also a unital algebra. First, we construct a para...

متن کامل

Filtrations, Mixed Complexes, and Cyclic Homology in Mixed Characteristic

In [5], we computed the cyclic homology of finite extensions of Dedekind domains. The crucial result was a formula for the cyclic homology, relative to a ground ring R, of A = R[x]/(P (x)). This paper presents two extensions of the methods and results of this paper. Recall that Hochschild homology, though generally defined in terms of a bar complex, is almost never, in practice, computed from i...

متن کامل

Equivariant Cyclic Homology for Quantum Groups

We define equivariant periodic cyclic homology for bornological quantum groups. Generalizing corresponding results from the group case, we show that the theory is homotopy invariant, stable and satisfies excision in both variables. Along the way we prove Radfords formula for the antipode of a bornological quantum group. Moreover we discuss anti-Yetter-Drinfeld modules and establish an analogue ...

متن کامل

Secondary Invariants for Frechet Algebras, Quasihomomorphisms, and the Residue Chern Character

A Fréchet algebra endowed with a multiplicatively convex topology has two types of invariants: homotopy invariants (topological K-theory and periodic cyclic homology) and secondary invariants (multiplicative Ktheory and the non-periodic versions of cyclic homology). The first aim of this paper is to establish a Riemann-Roch-Grothendieck theorem which describes direct images for homotopy and sec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004